Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the propagation of electromagnetic waves in tenuous plasmas, where the wave frequency is much larger than the plasma frequency . We show that in pair plasmas, nonlinear effects are weak for , where is the wave strength parameter. In electron-proton plasmas, a more restrictive condition must be satisfied, namely, either , where is the duration of the radiation pulse, or . We derive the equations that govern the evolution of the pulse in the weakly nonlinear regime. Our results have important implications for the modeling of fast radio bursts. We argue that (i) millisecond duration bursts with a smooth profile must be produced in a proton-free environment, where nonlinear effects are weaker, and (ii) propagation through an electron-proton plasma near the source can imprint a submicrosecond variability on the burst profile. Published by the American Physical Society2024more » « less
-
ABSTRACT The non-linear interaction between electromagnetic waves and plasmas attracts significant attention in astrophysics because it can affect the propagation of Fast Radio Bursts (FRBs) – luminous millisecond-duration pulses detected at radio frequency. The filamentation instability (FI) – a type of non-linear wave–plasma interaction – is considered to be dominant near FRB sources, and its non-linear development may also affect the inferred dispersion measure of FRBs. In this paper, we carry out fully kinetic particle-in-cell simulations of the FI in unmagnetized pair plasmas. Our simulations show that the FI generates transverse density filaments, and that the electromagnetic wave propagates in near vacuum between them, as in a waveguide. The density filaments keep merging until force balance between the wave ponderomotive force and the plasma pressure gradient is established. We estimate the merging time-scale and discuss the implications of filament merging for FRB observations.more » « less
-
Abstract Nonlinear effects are crucial for the propagation of fast radio bursts (FRBs) near the source. We study the filamentation of FRBs in the relativistic winds of magnetars, which are commonly invoked as the most natural FRB progenitors. As a result of filamentation, the particle number density and radiation intensity develop strong gradients along the direction of the wind magnetic field. A steady state is reached when the plasma pressure balances the ponderomotive force. In such a steady state, particles are confined in periodically spaced thin sheets, and electromagnetic waves propagate between them as in a waveguide. We show the following. (i) The dispersion relation resembles that in the initial homogeneous plasma, but the effective plasma frequency is determined by the separation of the sheets, not directly by the mean particle density. (ii) The contribution of relativistic magnetar winds to the dispersion measure of FRBs could be several orders of magnitude larger than previously thought. The dispersion measure of the wind depends on the properties of individual bursts (e.g., the luminosity) and therefore can change significantly among different bursts from repeating FRBs. (iii) Induced Compton scattering is suppressed because most of the radiation propagates in near-vacuum regions.more » « less
An official website of the United States government
